

MAXIMUM INDEPENDENT SET COVER PEBBLING NUMBER OF COMPLETE GRAPHS AND PATHS

A.LOURDUSAMY ${ }^{\mathbf{1}}$, C. MUTHULAKSHMI @ SASIKALA ${ }^{\mathbf{2}}$, AND T. MATHIVANAN ${ }^{3}$
1,3 Department of Mathematics, St.Xavier's College (Autonomous), Palayamkottai-627 002, India.
2 Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India.
1 lourdugnanam@hotmail.com
2 kalasasispkc@gmail.com
3 tahit_van_man@yahoo.com

Abstract

A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. A graph is said to be cover pebbled if every vertex has a pebble on it after a sequence of pebbling moves. The maximum independent set cover pebbling number, $\rho(\mathrm{G})$, of a graph G is the minimum number of pebbles that are placed on $V(G)$ such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set of G, regardless of their initial configuration. In this paper, we determine the maximum independent set cover pebbling number of complete graph and paths.

Keywords: Graph pebbling, cover pebbling, maximum independent set, complete graph and path.
2010 Mathematics Subject Classification: 05C05, 05C69, 05C99
(Received : $23^{\text {rd }}$ December 2014 ; Accepted : $20^{\text {th }}$ March 2015)

1. INTRODUCTION

Graphs considered here are simple, finite, undirected, and connected. Given a graph G, distribute k pebbles on its vertices in some configuration. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex in which each move takes place along a path. The pebbling number [1], $\pi(G)$, of a graph G is the minimum number of pebbles that are placed on $V(G)$, such that after a sequence of pebbling moves, a pebble can be moved to any root vertex v in G regardless of the initial configuration. One can find the survey of graph pebbling in [3]. The cover pebbling number [2], $\gamma(G)$ of a graph G is defined as the minimum number of pebbles needed to place a pebble on every vertex of a graph G using a sequence of pebbling moves, regardless of the initial configuration. A set S of vertices in a graph G is said to be independent set (or an internally stable set) if no two vertices in the set S are adjacent. An independent set S is maximum if G has no independent set S^{\prime} with $\left|S^{\prime}\right|>|S|$. In [4], we have introduced the concept of maximum independent set cover pebbling number. The maximum independent set cover pebbling number, $\rho(G)$ of a graph G, is the minimum number of pebbles that are placed on $V(G)$ such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set of G, regardless of their initial configuration. We have determined the maximum independent pebbling number of some families of graphs in $[4,5,6]$. In this paper, we determine the maximum independent set cover pebbling number $\rho(\mathrm{G})$ for complete graphs and path graphs.

Notation 1.1. For any vertex a of $G, f(a)$ denotes the number of pebbles placed at the vertex a.
Notation 1.2. For $a, b \in V(G)$ and $a b \in E(G), a \xrightarrow{m} b$ refers to moving m pebbles to b from a.
Notation 1.3. Throughout this paper we denote $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and P_{n} denotes the path $v_{1}, v_{2}, \ldots, v_{n}$.
2. MAXIMUM INDEPENDENT SET COVER PEBBLING NUMBER OF K_{n} AND P_{n}

Let us now find the maximum independent set cover pebbling number of complete graph K_{n}. Clearly $\rho\left(K_{l}\right)=1$. We may get a feeling that, when we place a pebble on any of the vertices of $K_{n}, n \geq 2$, we get a maximum independent set cover pebbling. Since the maximum independent set cover pebbling number is the least possible integer, it should imply that we should get a
maximum independent set cover pebbling for any number of pebbles greater than the maximum independent set cover pebbling number. In the case of the complete graph K_{n}, $n \geq 2$), the number of pebbles between 2 and n will not yield the property of maximum independent set cover pebbling.

Now we prove that $\rho\left(K_{n}\right)=n+1$ for all $n \geq 2$.

Theorem 2.1. For $K_{n}, \rho\left(K_{n}\right)=n+1(n \geq 2)$.
Proof. Suppose a pebble is placed on each of the vertices $v_{1}, v_{2}, \ldots, v_{n}$ of K_{n}. Then we cannot cover a maximum independent set of K_{n}. Hence $\rho\left(K_{n}\right)>n$.

We use induction on n to show that $\rho\left(K_{n}\right) \leq n+1$. First we prove that the theorem is true for $n=2$. Consider the distribution of three pebbles on the vertices of K_{2}. If we place three pebbles on a single vertex, say v_{l}, then we are done. Otherwise by pigeonhole principle, there exists a vertex, say v_{l}, with exactly two pebbles. Then moving a pebble to v_{2} from v_{l} covers a maximum independent set of K_{2}. Thus $\rho\left(K_{n}\right) \leq 3$. Now consider the distribution of $n+1$ pebbles on the vertices of $K_{n}(n>2)$. By pigeonhole principle, there exists a vertex, say v_{l}, with at least two pebbles.

Case 1. $f\left(v_{l}\right)=2$.
We move a pebble to the vertex v_{2} from v_{l}. Clearly $f\left(V\left(K_{n}\right)-\left\{v_{l}\right\}\right)=n$, and the induced sub graph of $V\left(K_{n}\right)$ - $\left\{v_{l}\right\}$ is K_{n-1}. Hence we are done by induction.
Case 2. $f\left(v_{l}\right)>2$.
In this case, it is easy to see that there is a vertex, say $v_{i}(i \neq 1)$ with zero pebbles. Then $f\left(V\left(K_{n}\right)-\{\right.$ $\left.\left.v_{i}\right\}\right)=n+1$ and the induced sub graph of $V\left(K_{n}\right)-\left\{v_{i}\right\}$ is K_{n-1}. Hence we are done by induction.Thus $\rho\left(K_{n}\right) \leq n+1$.

Let us now compute the maximum independent set cover pebbling number of a path P_{n} on n vertices. Since P_{2} is isomorphic to $K_{2}, \rho\left(P_{2}\right)=3$.

Theorem 2.2. For $P_{3}, \rho\left(P_{3}\right)=6$.

Proof. Consider the following configuration: $f\left(v_{2}\right)=5$ and $f\left(v_{1}\right)=f\left(v_{3}\right)=0$. Then we cannot cover the maximum independent set of P_{3}. Thus $\rho\left(P_{3}\right) \geq 6$.
Now consider the distribution of six pebbles on the vertices of P_{3}.

Case 1. $l \leq f\left(v_{3}\right) \leq 3$.
This implies that the path $v_{1} v_{2}$ contains at least three pebbles and hence we are done since $\rho\left(P_{2}\right)=3$, except for the distribution $f\left(v_{2}\right)=3$ and $f\left(v_{3}\right)=3$. In this case consider the following sequence of pebbling moves: $v_{3} \rightarrow v_{2} \xrightarrow{2} v_{1}$ and hence we are done.

Case 2. $f\left(v_{3}\right)=0$.
We need at most four pebbles to put a pebble on v_{3} from the vertices of $V\left(P_{3}\right)-\left\{v_{3}\right\}$. If we use three or four pebbles to pebble v_{3} then we are done. Otherwise, $f\left(v_{2}\right) \geq 2$. If $f\left(v_{2}\right)=2 \operatorname{or} f\left(v_{2}\right)=$ 4 then we are done by moving one or two pebbles to v_{3} from v_{2}. If $f\left(v_{2}\right)=6$ then we move a pebble to v_{1} and two pebbles to v_{3}. For $f\left(v_{2}\right)=3$ or $f\left(v_{2}\right)=5$, we use two pebbles from v_{2} to put a pebble at v_{3}. Then we can move all the pebbles from v_{2} to v_{1} using the pebbles at v_{1} so that v_{1} receives at least one pebble and hence we are done.

Case 3. $f\left(v_{3}\right) \geq 4$.
If $f\left(v_{1}\right)=0$, then we apply Case 2 . Let $f\left(v_{1}\right) \geq 1$. Then $f\left(v_{2}\right) \leq 1$. Suppose $f\left(v_{2}\right)=0$. Then we are done. If $f\left(v_{2}\right)=1$, then we move a pebble to v_{2} from v_{3} and then a pebble can be moved to v_{1} from v_{2} and hence we are done.
Thus $\rho\left(P_{3}\right) \leq 6$.
Theorem 2.3. For $P_{4}, \rho\left(P_{4}\right)=6$.
Proof. Consider the following distribution: $f\left(v_{1}\right)=f\left(v_{2}\right)=1 ; f\left(v_{3}\right)=0 ; f\left(v_{4}\right)=3$. Then we cannot cover a maximum independent set of P_{4}. Hence $\rho\left(P_{4}\right)>5$. Now consider the distribution of six pebbles on the vertices of P_{4}. Let P_{A} be the subgraph induced by the vertices v_{1}, v_{2} and let P_{B} be the subgraph induced by the vertices v_{3}, v_{4}. According to the distributions of six pebbles on the vertices of P_{A} and P_{B}, we consider the following two cases:

1. Both P_{A} and P_{B} contain exactly three pebbles.
2. Any one of P_{A} and P_{B}, say P_{A}, contains at most two pebbles.

Case 1. Both the paths P_{A} and P_{B} receive exactly three pebbles each.
Clearly we are done since $\rho\left(P_{A}\right)=\rho\left(P_{B}\right)=\rho\left(P_{2}\right)=3$, except for the distribution $f\left(v_{2}\right)=$ $f\left(v_{3}\right)=3$. Now we consider the following pebbling moves: $v_{3} \xrightarrow{1} \stackrel{2}{v_{2}} v_{1}$ and hence we are done.

Case 2. Assume that P_{A} contains at most two pebbles.
Subcase 2.1. Assume $f\left(P_{A}\right)=0$.
Then $f\left(P_{B}\right)=6$ and we are done since $f\left(P_{B} \cup\left\{v_{2}\right\}\right)=6$ and $P_{B} \cup\left\{v_{2}\right\}$ is isomorphic to P_{3}.

Subcase 2.2. Assume that P_{A} has a pebble on it.
Then P_{B} contains five pebbles. If $f\left(v_{1}\right)=1$, then clearly we are done. So, assume that $f\left(v_{2}\right)$ $=1$. Then $f\left(P_{B} \cup\left\{v_{2}\right\}\right)=6$ and $\rho\left(P_{3}\right)=6$ and hence we are done.

Subcase 2.3. Assume that P_{A} has two pebbles.
Then P_{B} contains four pebbles. If $f\left(v_{l}\right)=2$ or $f\left(v_{2}\right)=2$, then clearly we are done. Let $f\left(v_{l}\right)$ $=1$ and $f\left(v_{2}\right)=1$. If $f\left(v_{3}\right) \geq 2$, then we are done. If $f\left(v_{3}\right)=1$, then $f\left(v_{4}\right)=3$. Consider the following pebbling moves: $v_{4} \xrightarrow{1} v_{3} \xrightarrow{1} v_{2} \xrightarrow{1} v_{1}$ and we are done. If $f\left(v_{3}\right)=0$, then $f\left(v_{4}\right)=4$. Consider the following pebbling moves: $v_{4} \xrightarrow{2} v_{3} \rightarrow v_{2} \rightarrow v_{3}$ and hence we are done.

Thus $\rho\left(P_{4}\right) \leq 6$.

Theorem 2.4. For $P_{5}, \rho\left(P_{5}\right)=21$.
Proof. Consider the following configuration: $f\left(v_{5}\right)=20, f(v)=0$ for all $v \in V\left(P_{5}\right)-\left\{v_{5}\right\}$. Then we cannot cover the maximum independent set of P_{5}. Hence $\rho\left(P_{5}\right)>20$. Let us consider the distribution of twenty one pebbles on the vertices of P_{5} and different cases are discussed below. For that, let P_{A} be the subgraph induced by the vertices v_{l} and v_{2} and P_{B} be the subgraph induced by the vertices v_{3}, v_{4} and v_{5}.
Case 1. $f\left(P_{A}\right) \leq 2$.
Then $f\left(P_{B}\right) \geq 19$. Let $f\left(P_{A}\right)=2$. If $f\left(v_{1}\right)=2$ or $f\left(v_{2}\right)=2$, then clearly we are done. So assume that $f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=1$. Using at most eight pebbles we can move a pebble to v_{2} and then move a pebble to v_{1}. Hence the number of pebbles in v_{2} is zero and we are done since $f\left(P_{B}\right) \geq 11$ and $\rho\left(P_{B}\right)=6$. Let $f\left(P_{A}\right)=1$. Clearly we are done if $f\left(v_{1}\right)=1$. Assume that $f\left(v_{2}\right)=1$. Using at most eight pebbles from P_{B}, we can move a pebble to v_{l}, so that $f\left(v_{2}\right)$ becomes zero. Hence we are done, since $f\left(P_{B}\right) \geq 12$ and $\rho\left(P_{B}\right)=6$. Let $f\left(P_{A}\right)=0$. Using at most sixteen pebbles we can place a pebble on v_{1}. Then $f\left(P_{B}\right) \geq 5$. If $f\left(P_{B}\right) \geq 6$, then clearly we are done since $\rho\left(P_{B}\right)=6$. If $f\left(P_{B}\right)=5$ then $f\left(v_{5}\right)=5$ and hence we are done.
Case 2. Assume $f\left(P_{B}\right) \leq 5$.
Then $f\left(P_{A}\right) \geq 16$. If $3 \leq f\left(P_{B}\right) \leq 5$, then clearly we are done. Let $f\left(P_{B}\right) \leq 2$. This implies that $f\left(P_{A}\right) \geq 19$. If $f\left(P_{B}\right)=2$ then also we are done. Assume that $f\left(P_{B}\right)=1$. Using at most sixteen pebbles from P_{A}, we can put one pebble each on v_{3} and v_{5} so that v_{4} has zero pebbles on it. Then $f\left(P_{A}\right) \geq 4$ and we are done. If $f\left(P_{B}\right)=0$, then we can cover the maximum independent set of P_{5} easily.

Case 3. Assume $f\left(P_{A}\right) \geq 3$ and $f\left(P_{B}\right) \geq 6$.
Clearly we are done except for the distribution $f\left(v_{1}\right)=0, f\left(v_{2}\right)=3$ and $f\left(P_{B}\right)=18$. Using at most eight pebbles we can move a pebble to v_{2} and then move two pebbles to v_{1} from v_{2}. Hence we are done, since $\rho\left(P_{3}\right)=6$ and $f\left(P_{3}\right) \geq 10$.

Thus $\rho\left(P_{5}\right) \leq 21$.

Theorem 2.5. For $P_{6}, \rho\left(P_{6}\right)=21$.
Proof. Consider the following configuration: $f\left(v_{6}\right)=20, f(v)=0$ for all $V(G)-\left\{v_{6}\right\}$. Then we cannot cover a maximum independent set of P_{6}. Hence $\rho\left(P_{6}\right)>20$.
Now consider the distribution of twenty one pebbles on the vertices of P_{6}. Let P_{A} be the subgraph induced by the vertices v_{l} and v_{2}. Let P_{B} be the subgraph induced by the vertices v_{3}, v_{4}, v_{5} and v_{6}. According to the distribution of these twenty one pebbles on the vertices of P_{A} and P_{B}, we find the following case:

Case 1. If $f\left(P_{A}\right) \leq 2$, then $f\left(P_{B}\right) \geq 19$.
Let $f\left(P_{A}\right)=2$. If $f\left(v_{1}\right)=2$ or $f\left(v_{2}\right)=2$ then clearly we are done. So assume that $f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=1$. Then $f\left(P_{B}\right)=19$. If $\mathrm{f}\left(\mathrm{v}_{3}\right) \geq 2$ then a pebble can be moved to v_{2} from v_{3} and then a pebble can be moved to v_{3} from v_{2}. Then $f\left(P_{B}\right) \geq 18$ and we are done since $\rho\left(P_{B}\right)=\rho\left(P_{4}\right)=6$. Assume $f\left(v_{3}\right) \leq 1$. If $f\left(v_{3}\right)=1$, using at most eight pebbles from P_{B} we can move a pebble to v_{3}. And from v_{3}, a pebble can be moved to v_{2} and then we can move a pebble to v_{3} from v_{2}. Now $f\left(P_{B}\right) \geq 12$ and hence we are done since $\rho\left(P_{B}\right)=\rho\left(P_{4}\right)=6$. If $f\left(v_{3}\right)=0$, then using at most sixteen pebbles from P_{B} we can move a pebble to v_{2}. After moving a pebble to v_{2} from P_{B}, if $f\left(P_{B}\right) \geq 6$ then we move a pebble to v_{l} from v_{2}. If $3 \leq f\left(P_{B}\right) \leq 5$, then we move a pebble to v_{3} from v_{2}. Clearly we are done, since v_{6} is the only vertex contained 3 or 4 or 5 pebbles on it. Let $f\left(P_{A}\right)=1$. If $f\left(v_{l}\right)=1$ then we are done since $f\left(P_{B}\right)=20$ and $\rho\left(\mathrm{P}_{\mathrm{B}}\right)=6$. Similarly we are done if $f\left(v_{2}\right)=1$. Let $f\left(P_{A}\right)=0$. Then $f\left(P_{B}\right)=21$. Clearly we are done since $f\left(P_{B} \cup\left\{v_{2}\right\}\right)=21$ and $\rho\left(P_{5}\right)=21$.

Case 2. If $f\left(P_{B}\right) \leq 5$, then $f\left(P_{A}\right) \geq 16$.
If $3 \leq f\left(P_{B}\right) \leq 5$, then using at most twelve pebbles, we move at most three pebbles to v_{3} from P_{A}, so $f\left(P_{B}\right) \geq 6$ and we are done. Then $f\left(P_{A}\right) \geq 4$, hence we can pebble the maximum
independent set of P_{A}, since $\rho\left(P_{A}\right)=3$. If $f\left(P_{B}\right)=2$, then $f\left(P_{A}\right)=19$. Using at most sixteen pebbles from P_{A} we can cover the maximum independent set of P_{6}. Assume that $f\left(P_{B}\right)=1$. Then $f\left(P_{A}\right)=$ 20. Suppose $f\left(v_{6}\right)=0$ and $f\left(v_{i}\right)=1$ for some $i=3,4,5$. Then we are done since $\rho\left(\mathrm{P}_{6}-\left\{\mathrm{v}_{6}\right\}\right)=\rho$ $\left(P_{5}\right)=21$. Suppose $f\left(v_{6}\right)=1$ and $f\left(v_{i}\right)=0$ for all $i=3,4,5$. Then using six pebbles we can cover maximum independent set of $\mathrm{P}_{6}-\left\{\mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and we are done. If $f\left(P_{B}\right)=0$, then we are done since $\rho\left(\mathrm{P}_{6}-\left\{\mathrm{v}_{6}\right\}\right)=\rho\left(P_{5}\right)=21$.

Case 3. $f\left(P_{A}\right) \geq 3$ and $f\left(P_{B}\right) \geq 6$.
Clearly we are done except for the distribution $f\left(v_{1}\right)=0, f\left(v_{2}\right)=3$ and $f\left(P_{B}\right)=18$. Since $f\left(P_{B} \cup\left\{v_{2}\right\}\right)=21$ and $\rho\left(P_{5}\right)=21$, we are done in this distribution also.

Hence $\rho\left(\mathrm{P}_{6}\right) \leq 21$.

Theorem 2.6. For $P_{n}(n \geq 5), \rho\left(P_{n}\right)=\left\{\begin{array}{llr}\frac{2^{n}-1}{3} & \text { if } & \mathrm{n} \text { is even } \\ \frac{2^{n+1}-1}{3} & \text { if } & \mathrm{n} \text { is odd }\end{array}\right.$
Proof. Consider the configuration where all pebbles are placed on the vertex v_{1}.
Clearly, we need at least $\left\{\begin{array}{lll}\frac{2^{n}-1}{3} & \text { if } & n \text { is even } \\ \frac{2^{n+1}-1}{3} & \text { if } & n \text { is odd }\end{array}\right.$ pebbles to cover the maximum independent $\operatorname{set}\left\{\begin{array}{ll}\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-3}, v_{n-1}\right\} & \text { if } \\ \left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-2}, v_{n}\right\} & \text { if even } \\ \mathrm{n} \text { is odd }\end{array}\right.$ of P_{n} from the vertex v_{l}.
Thus $\rho\left(P_{n}\right) \geq\left\{\begin{array}{llc}\frac{2^{n}-1}{3} & \text { if } & \mathrm{n} \text { is even } \\ \frac{2^{n+1}-1}{3} & \text { if } & \mathrm{n} \text { is odd }\end{array}\right.$. Next we prove the upper bound by induction on n . The
result is true for $\mathrm{n}=5$ and $\mathrm{n}=6$ from Theorem 2.4 and Theorem 2.5 respectively. Also note that $\rho\left(P_{m}\right)=\rho\left(P_{m-1}\right)$ when m is even and for $\mathrm{n} \geq 7, \rho\left(P_{n}\right)=\rho\left(P_{n-2}\right)+ \begin{cases}2^{n-2} & \text { if } \mathrm{n} \text { is even } \\ 2^{n-1} & \text { if } \mathrm{n} \text { is odd } .\end{cases}$

Now consider the distribution of $\rho\left(P_{n}\right)$ pebbles on the vertices of P_{n}.

Case 1. n is odd.
Let $f\left(v_{n}\right)=0$. If $f\left(v_{n-1}\right)=0$, then we can pebble the vertex v_{n} by using at most 2^{n-1} pebbles. Then the path $P_{n-2}: v_{1} v_{2} v_{3} \ldots v_{n-3} v_{n-2}$ contains at least $\rho\left(P_{n-2}\right)$ pebbles and hence we are done. So, assume that $f\left(v_{n-1}\right) \geq 1$. If $f\left(v_{n-1}\right)=1$ or 3 then also we are done. If $f\left(v_{n-1}\right)$ is even then we move a
single pebble to v_{n} and then we move $\frac{f\left(v_{n-1}\right)-2}{2}$ pebbles to v_{n-2}. Hence, we are done since $f\left(P_{n-2}\right)+$ $\frac{f\left(v_{n-1}\right)-2}{2} \geq \rho\left(P_{n-2}\right)$. If $f\left(v_{n-1}\right) \geq 5$ then consider the following sequence of pebbling moves: $v_{n-1} \xrightarrow{2}$ $v_{n} \xrightarrow{1} v_{n-1} \xrightarrow{1} v_{n}$ and then we move $\frac{f\left(v_{n-1}\right)-5}{2}$ to v_{n-2}. Here also, we are done since $f\left(P_{n-2}\right)+\frac{f\left(v_{n-1}\right)-5}{2}$ $\geq \rho\left(P_{n-2}\right)$. So, we assume that $f\left(v_{n}\right) \geq 1$. In a similar way, we may assume that $f\left(v_{l}\right) \geq 1$. Consider the paths $P_{A}: v_{l} v_{2} \ldots v_{n-2}$ and $P_{B}: v_{3} v_{4} \ldots v_{n}$. Then, any one of the path contains at least $\rho\left(P_{n-2}\right)$ pebbles. Without loss of generality, let P_{A} be the path. If $f\left(v_{n-1}\right)=0$ then we are done easily. Similarly, we are done if $f\left(v_{n-1}\right)+f\left(v_{n}\right) \geq 2$ except the case $f\left(v_{n}\right)=1$ and $f\left(v_{n-1}\right)=1$. Now, we consider the case $f\left(v_{n}\right)=1$ and $f\left(v_{n-1}\right)=1$. For this case, P_{A} contains $\rho\left(P_{n}\right)-2$ pebbles on it. Using at most 2^{n-2} pebbles, we can move a pebble to v_{n-1} from the vertices of P_{A} and then we move a pebble to v_{n-2} from v_{n-1}. Thus, we are done since $\rho\left(P_{n}\right)-2^{n-2}-2 \geq \rho\left(P_{n-2}\right)$.

Case 2. n is even.
Clearly, we are done if $f\left(v_{n}\right)=0$ or $f\left(v_{l}\right)=0$, since $\rho\left(P_{n}\right)=\rho\left(P_{n-l}\right)$ when n is even. So, we assume that $f\left(v_{n}\right) \geq 1$ and $f\left(v_{1}\right) \geq 1$. Consider the paths $P_{A}: v_{1} v_{2} \ldots v_{n-2}$ and $P_{B}: v_{3} v_{4} \ldots v_{n}$. Then any one of the path contains at least $\rho\left(P_{n-2}\right)$ pebbles. Without loss of generality, let P_{A} be the path. If $f\left(v_{n-1}\right)=0$ then we are done easily. Similarly, we are done if $f\left(\mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right) \geq 2$ except the case $f\left(v_{n}\right)=1$ and $f\left(v_{n-1}\right)=1$. Finally, we consider the case $f\left(v_{n}\right)=1$ and $f\left(v_{n-1}\right)=1$. For this case, P_{A} contains $\rho\left(P_{n}\right)-2$ pebbles on it. Using at most 2^{n-2} pebbles from the vertices of P_{A}, we can move a pebble to v_{n-1}. If we use exactly 2^{n-2} pebbles to pebble v_{n-1} from P_{A}, then we move one pebble to v_{n-2} from v_{n-1} and hence we are done since the path $v_{1} v_{2} \ldots v_{n-4}$ contains more than $\rho\left(P_{n-4}\right)$ pebbles. If we use less than 2^{n-2} pebbles to pebble $\mathrm{v}_{\mathrm{n}-1}$ from P_{A}, then we move one pebble to v_{n} from v_{n-1} and hence we are done since P_{n-2} contains at least $\rho\left(P_{n-2}\right)$ pebbles.
Thus $\rho\left(P_{n}\right) \leq\left\{\begin{array}{llr}\frac{2^{n}-1}{3} & \text { if } & \mathrm{n} \text { is even } \\ \frac{2^{n+1}-1}{3} & \text { if } & \mathrm{n} \text { is odd }\end{array}\right.$.

REFERENCES

[1]. F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc Math, 2 (1989), 467-472.
[2] B.Crul, T.Cundiff_, P.Feltman, G.H.Hurlbert, L.Pudwell, Z.Szanizlo, Z.Tuza, The cover pebbling number of graphs, Discrete Math, 296 (2005), 15-23.
[3] G.Hurlbert, A survey of graph pebbling, Congressus Numerantium, 139 (1999), 41-64.
[4] A. Lourdusamy, C. Muthulakshmi @ Sasikala, Maximum independent cover pebbling number of a star, International Journal of Mathematical Archive, 3(2) (2012), 616-618.
[5] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of a Binary Tree, Sciencia Acta Xaveriana, 3(2) (2012), 9-20.
[6] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of an m-ary tree, Accepted for publication (Sciencia Acta Xaveriana).

