Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152

Volume 7 No. 1 pp. 19-27 March 2016

MAXIMUM INDEPENDENT SET COVER PEBBLING NUMBER OF COMPLETE GRAPHS AND PATHS

A.LOURDUSAMY¹, C. MUTHULAKSHMI @ SASIKALA², AND T. MATHIVANAN³

- 1,3 Department of Mathematics,St.Xavier's College (Autonomous),Palayamkottai-627 002, India.
- Department of Mathematics,
 Sri Paramakalyani College,
 Alwarkurichi-627412, India.
- 1 lourdugnanam@hotmail.com
- 2 kalasasispkc@gmail.com
- 3 tahit_van_man@yahoo.com

Abstract. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. A graph is said to be cover pebbled if every vertex has a pebble on it after a sequence of pebbling moves. The maximum independent set cover pebbling number, $\rho(G)$, of a graph G is the minimum number of pebbles that are placed on V(G) such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set of G, regardless of their initial configuration. In this paper, we determine the maximum independent set cover pebbling number of complete graph and paths.

Keywords: Graph pebbling, cover pebbling, maximum independent set, complete graph and path.

2010 Mathematics Subject Classification: 05C05, 05C69, 05C99

(Received: 23rd December 2014; Accepted: 20th March 2015)

1. INTRODUCTION

Graphs considered here are simple, finite, undirected, and connected. Given a graph G, distribute k pebbles on its vertices in some configuration. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex in which each move takes place along a path. The pebbling number [1], $\pi(G)$, of a graph G is the minimum number of pebbles that are placed on V(G), such that after a sequence of pebbling moves, a pebble can be moved to any root vertex v in G regardless of the initial configuration. One can find the survey of graph pebbling in [3]. The cover pebbling number [2], $\gamma(G)$ of a graph G is defined as the minimum number of pebbles needed to place a pebble on every vertex of a graph G using a sequence of pebbling moves, regardless of the initial configuration. A set S of vertices in a graph G is said to be independent set (or an internally stable set) if no two vertices in the set S are adjacent. An independent set S is maximum if G has no independent set S' with |S'| > |S|. In [4], we have introduced the concept of maximum independent set cover pebbling number. The maximum independent set cover pebbling number, $\rho(G)$ of a graph G, is the minimum number of pebbles that are placed on V(G) such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set of G, regardless of their initial configuration. We have determined the maximum independent pebbling number of some families of graphs in [4, 5, 6]. In this paper, we determine the maximum independent set cover pebbling number $\rho(G)$ for complete graphs and path graphs.

Notation 1.1. For any vertex a of G, f(a) denotes the number of pebbles placed at the vertex a.

Notation 1.2. For $a, b \in V(G)$ and $ab \in E(G)$, $a \xrightarrow{m} b$ refers to moving m pebbles to b from a.

Notation 1.3. Throughout this paper we denote $V(K_n) = \{v_1, v_2, ..., v_n\}$ and P_n denotes the path $v_1, v_2, ..., v_n$.

2. MAXIMUM INDEPENDENT SET COVER PEBBLING NUMBER OF K_n AND P_n

Let us now find the maximum independent set cover pebbling number of complete graph K_n . Clearly $\rho(K_1) = 1$. We may get a feeling that, when we place a pebble on any of the vertices of K_n , $n \ge 2$, we get a maximum independent set cover pebbling. Since the maximum independent set cover pebbling number is the least possible integer, it should imply that we should get a

maximum independent set cover pebbling for any number of pebbles greater than the maximum independent set cover pebbling number. In the case of the complete graph K_n , $(n\geq 2)$, the number of pebbles between 2 and n will not yield the property of maximum independent set cover pebbling.

Now we prove that ρ (K_n) = n+1 for all $n \ge 2$.

Theorem 2.1. For K_n , $\rho(K_n) = n + 1 \ (n \ge 2)$.

Proof. Suppose a pebble is placed on each of the vertices v_1 , v_2 , ..., v_n of K_n . Then we cannot cover a maximum independent set of K_n . Hence $\rho(K_n) > n$.

We use induction on n to show that $\rho(K_n) \le n + 1$. First we prove that the theorem is true for n = 2.Consider the distribution of three pebbles on the vertices of K_2 . If we place three pebbles on a single vertex, say v_I , then we are done. Otherwise by pigeonhole principle, there exists a vertex, say v_I , with exactly two pebbles. Then moving a pebble to v_2 from v_I covers a maximum independent set of K_2 . Thus $\rho(K_n) \le 3$. Now consider the distribution of n + 1 pebbles on the vertices of K_n (n > 2). By pigeonhole principle, there exists a vertex, say v_I , with at least two pebbles.

Case 1. $f(v_1) = 2$.

We move a pebble to the vertex v_2 from v_1 . Clearly $f(V(K_n)-\{v_1\})=n$, and the induced sub graph of $V(K_n)-\{v_1\}$ is K_{n-1} . Hence we are done by induction.

Case 2. $f(v_1) > 2$.

In this case, it is easy to see that there is a vertex, say v_i ($i \neq 1$) with zero pebbles. Then $f(V(K_n)-\{v_i\}) = n + 1$ and the induced sub graph of $V(K_n)-\{v_i\}$ is K_{n-1} . Hence we are done by induction. Thus $\rho(K_n) \leq n+1$.

Let us now compute the maximum independent set cover pebbling number of a path P_n on n vertices. Since P_2 is isomorphic to K_2 , ρ (P_2) = 3.

Theorem 2.2. For P_3 , ρ (P_3) = 6.

Proof. Consider the following configuration: $f(v_2) = 5$ and $f(v_1) = f(v_3) = 0$. Then we cannot cover the maximum independent set of P_3 . Thus ρ $(P_3) \ge 6$.

Now consider the distribution of six pebbles on the vertices of P_3 .

Case 1. $1 \le f(v_3) \le 3$.

This implies that the path v_1v_2 contains at least three pebbles and hence we are done since ρ (P_2) = 3, except for the distribution $f(v_2)$ = 3 and $f(v_3)$ = 3. In this case consider the following sequence of pebbling moves: $v_3 \rightarrow v_2 \rightarrow v_1$ and hence we are done.

Case 2.
$$f(v_3) = 0$$
.

We need at most four pebbles to put a pebble on v_3 from the vertices of $V(P_3)$ - $\{v_3\}$. If we use three or four pebbles to pebble v_3 then we are done. Otherwise, $f(v_2) \ge 2$. If $f(v_2) = 2$ or $f(v_2) = 4$ then we are done by moving one or two pebbles to v_3 from v_2 . If $f(v_2) = 6$ then we move a pebble to v_1 and two pebbles to v_3 . For $f(v_2) = 3$ or $f(v_2) = 5$, we use two pebbles from v_2 to put a pebble at v_3 . Then we can move all the pebbles from v_2 to v_1 using the pebbles at v_1 so that v_1 receives at least one pebble and hence we are done.

Case 3. $f(v_3) \ge 4$.

If $f(v_1) = 0$, then we apply Case 2. Let $f(v_1) \ge 1$. Then $f(v_2) \le 1$. Suppose $f(v_2) = 0$. Then we are done. If $f(v_2) = 1$, then we move a pebble to v_2 from v_3 and then a pebble can be moved to v_1 from v_2 and hence we are done.

Thus ρ $(P_3) \leq 6$.

Theorem 2.3. For P_4 , ρ (P_4) = 6.

Proof. Consider the following distribution: $f(v_1) = f(v_2) = 1$; $f(v_3) = 0$; $f(v_4) = 3$. Then we cannot cover a maximum independent set of P_4 . Hence $\rho(P_4) > 5$. Now consider the distribution of six pebbles on the vertices of P_4 . Let P_A be the subgraph induced by the vertices v_1 , v_2 and let P_B be the subgraph induced by the vertices v_3 , v_4 . According to the distributions of six pebbles on the vertices of P_A and P_B , we consider the following two cases:

- 1. Both P_A and P_B contain exactly three pebbles.
- 2. Any one of P_A and P_B , say P_A , contains at most two pebbles.

Case 1. Both the paths P_A and P_B receive exactly three pebbles each.

Clearly we are done since $\rho(P_A) = \rho(P_B) = \rho(P_2) = 3$, except for the distribution $f(v_2) = f(v_3) = 3$. Now we consider the following pebbling moves: $v_3 \xrightarrow{\bullet} v_2 \xrightarrow{\bullet} v_1$ and hence we are done.

Case 2. Assume that P_A contains at most two pebbles.

Subcase 2.1. Assume $f(P_A) = 0$.

Then $f(P_B) = 6$ and we are done since $f(P_B \cup \{v_2\}) = 6$ and $P_B \cup \{v_2\}$ is isomorphic to P_3 .

Subcase 2.2. Assume that P_A has a pebble on it.

Then P_B contains five pebbles. If $f(v_1) = 1$, then clearly we are done. So, assume that $f(v_2) = 1$. Then $f(P_B \cup \{v_2\}) = 6$ and $\rho(P_3) = 6$ and hence we are done.

Subcase 2.3. Assume that P_A has two pebbles.

Then P_B contains four pebbles. If $f(v_1) = 2$ or $f(v_2) = 2$, then clearly we are done. Let $f(v_1) = 1$ and $f(v_2) = 1$. If $f(v_3) \ge 2$, then we are done. If $f(v_3) = 1$, then $f(v_4) = 3$. Consider the following pebbling moves: $v_4 \to v_3 \to v_2 \to v_1$ and we are done. If $f(v_3) = 0$, then $f(v_4) = 4$. Consider the following pebbling moves: $v_4 \to v_3 \to v_2 \to v_3$ and hence we are done.

Thus
$$\rho$$
 $(P_4) \leq 6$.

Theorem 2.4. For P_5 , ρ (P_5) = 21.

Proof. Consider the following configuration: $f(v_5) = 20$, f(v) = 0 for all $v \in V(P_5) - \{v_5\}$. Then we cannot cover the maximum independent set of P_5 . Hence $\rho(P_5) > 20$. Let us consider the distribution of twenty one pebbles on the vertices of P_5 and different cases are discussed below. For that, let P_A be the subgraph induced by the vertices v_1 and v_2 and v_3 be the subgraph induced by the vertices v_3 , v_4 and v_5 .

Case 1. $f(P_A) \leq 2$.

Then $f(P_B) \ge 19$. Let $f(P_A) = 2$. If $f(v_I) = 2$ or $f(v_2) = 2$, then clearly we are done. So assume that $f(v_I) = 1$ and $f(v_2) = 1$. Using at most eight pebbles we can move a pebble to v_2 and then move a pebble to v_1 . Hence the number of pebbles in v_2 is zero and we are done since $f(P_B) \ge 11$ and ρ (P_B) = 6. Let $f(P_A) = 1$. Clearly we are done if $f(v_1) = 1$. Assume that $f(v_2) = 1$. Using at most eight pebbles from P_B , we can move a pebble to v_1 , so that $f(v_2)$ becomes zero. Hence we are done, since $f(P_B) \ge 12$ and $\rho(P_B) = 6$. Let $f(P_A) = 0$. Using at most sixteen pebbles we can place a pebble on v_1 . Then $f(P_B) \ge 5$. If $f(P_B) \ge 6$, then clearly we are done since $\rho(P_B) = 6$. If $f(P_B) = 5$ then $f(v_2) = 5$ and hence we are done.

Case 2. Assume $f(P_B) \le 5$.

Then $f(P_A) \ge 16$. If $3 \le f(P_B) \le 5$, then clearly we are done. Let $f(P_B) \le 2$. This implies that $f(P_A) \ge 19$. If $f(P_B) = 2$ then also we are done. Assume that $f(P_B) = 1$. Using at most sixteen pebbles from P_A , we can put one pebble each on v_3 and v_5 so that v_4 has zero pebbles on it. Then $f(P_A) \ge 4$ and we are done. If $f(P_B) = 0$, then we can cover the maximum independent set of P_5 easily.

Case 3. Assume $f(P_A) \ge 3$ and $f(P_B) \ge 6$.

Clearly we are done except for the distribution $f(v_1) = 0$, $f(v_2) = 3$ and $f(P_B) = 18$. Using at most eight pebbles we can move a pebble to v_2 and then move two pebbles to v_1 from v_2 . Hence we are done, since $\rho(P_3) = 6$ and $f(P_3) \ge 10$.

Thus
$$\rho(P_5) \leq 21$$
.

Theorem 2.5. For P_6 , ρ (P_6) = 21.

Proof. Consider the following configuration: $f(v_6) = 20$, f(v) = 0 for all $V(G)-\{v_6\}$. Then we cannot cover a maximum independent set of P_6 . Hence ρ $(P_6)>20$.

Now consider the distribution of twenty one pebbles on the vertices of P_6 . Let P_A be the subgraph induced by the vertices v_1 and v_2 . Let P_B be the subgraph induced by the vertices v_3 , v_4 , v_5 and v_6 . According to the distribution of these twenty one pebbles on the vertices of P_A and P_B , we find the following case:

Case 1. If $f(P_A) \le 2$, then $f(P_B) \ge 19$.

Let $f(P_A)=2$. If $f(v_1)=2$ or $f(v_2)=2$ then clearly we are done. So assume that $f(v_1)=1$ and $f(v_2)=1$. Then $f(P_B)=19$. If $f(v_3)\geq 2$ then a pebble can be moved to v_2 from v_3 and then a pebble can be moved to v_3 from v_2 . Then $f(P_B)\geq 18$ and we are done since $\rho(P_B)=\rho(P_4)=6$. Assume $f(v_3)\leq 1$. If $f(v_3)=1$, using at most eight pebbles from P_B we can move a pebble to v_3 . And from v_3 , a pebble can be moved to v_2 and then we can move a pebble to v_3 from v_2 . Now $f(P_B)\geq 12$ and hence we are done since $\rho(P_B)=\rho(P_4)=6$. If $f(v_3)=0$, then using at most sixteen pebbles from v_3 we can move a pebble to v_3 from v_4 . After moving a pebble to v_4 from v_4 . If v_4 is v_4 from v_4 . If v_4 is v_4 from v_4 from v_4 . If v_4 is v_4 from v_4 from v_4 . If v_4 is v_4 from v_4

Case 2. If $f(P_B) \le 5$, then $f(P_A) \ge 16$.

If $3 \le f(P_B) \le 5$, then using at most twelve pebbles, we move at most three pebbles to v_3 from P_A , so $f(P_B) \ge 6$ and we are done. Then $f(P_A) \ge 4$, hence we can pebble the maximum

independent set of P_A , since $\rho(P_A) = 3$. If $f(P_B) = 2$, then $f(P_A) = 19$. Using at most sixteen pebbles from P_A we can cover the maximum independent set of P_6 . Assume that $f(P_B) = 1$. Then $f(P_A) = 20$. Suppose $f(v_6) = 0$ and $f(v_i) = 1$ for some i = 3, 4, 5. Then we are done since ρ ($P_6 - \{v_6\}$) = ρ (P_5) = 21. Suppose $f(v_6) = 1$ and $f(v_i) = 0$ for all i = 3, 4, 5. Then using six pebbles we can cover maximum independent set of $P_6 - \{v_5, v_6\}$ and we are done. If $f(P_B) = 0$, then we are done since ρ ($P_6 - \{v_6\}$) = ρ (P_5) = 21.

Case 3. $f(P_A) \ge 3$ and $f(P_B) \ge 6$.

Clearly we are done except for the distribution $f(v_1) = 0$, $f(v_2) = 3$ and $f(P_B) = 18$. Since $f(P_B \cup \{v_2\}) = 21$ and $\rho(P_5) = 21$, we are done in this distribution also.

Hence
$$\rho(P_6) \le 21$$
.

Theorem 2.6. For
$$P_n(n \ge 5)$$
, $\rho(P_n) = \begin{cases} \frac{2^n - 1}{3} & \text{if } n \text{ is even} \\ \frac{2^{n+1} - 1}{3} & \text{if } n \text{ is odd} \end{cases}$

Proof. Consider the configuration where all pebbles are placed on the vertex v_1 .

Clearly, we need at least $\begin{cases} \frac{2^n-1}{3} & \text{if } n \text{ is even} \\ \frac{2^{n+1}-1}{3} & \text{if } n \text{ is odd} \end{cases}$ pebbles to cover the maximum independent

$$\operatorname{set} \begin{cases} \{v_1, v_3, v_5, \dots, v_{n-3}, v_{n-1}\} & \text{if} & \text{n is even} \\ \{v_1, v_3, v_5, \dots, v_{n-2}, v_n\} & \text{if} & \text{n is odd} \end{cases} \text{of } P_n \text{ from the vertex } v_I.$$

Thus
$$\rho(P_n) \geq \begin{cases} \frac{2^n-1}{3} & \text{if } n \text{ is even} \\ \frac{2^{n+1}-1}{3} & \text{if } n \text{ is odd} \end{cases}$$
. Next we prove the upper bound by induction on n. The

result is true for n = 5 and n = 6 from Theorem 2.4 and Theorem 2.5 respectively. Also note that $\rho(P_m) = \rho(P_{m-1})$ when m is even and for $n \ge 7$, $\rho(P_n) = \rho(P_{n-2}) + \begin{cases} 2^{n-2} & \text{if } n \text{ is even} \\ 2^{n-1} & \text{if } n \text{ is odd} \end{cases}$.

Now consider the distribution of $\rho(P_n)$ pebbles on the vertices of P_n .

Case 1. *n* is odd.

Let $f(v_n) = 0$. If $f(v_{n-1}) = 0$, then we can pebble the vertex v_n by using at most 2^{n-1} pebbles. Then the path $P_{n-2}: v_1v_2v_3...v_{n-3}v_{n-2}$ contains at least $\rho(P_{n-2})$ pebbles and hence we are done. So, assume that $f(v_{n-1}) \ge 1$. If $f(v_{n-1}) = 1$ or 3 then also we are done. If $f(v_{n-1})$ is even then we move a single pebble to v_n and then we move $\frac{f(v_{n-1})-2}{2}$ pebbles to v_{n-2} . Hence, we are done since $f(P_{n-2})+\frac{f(v_{n-1})-2}{2} \ge \rho$ (P_{n-2}) . If $f(v_{n-1}) \ge 5$ then consider the following sequence of pebbling moves: $v_{n-1} \stackrel{?}{\to} v_{n-1} \stackrel{1}{\to} v_n$ and then we move $\frac{f(v_{n-1})-5}{2}$ to v_{n-2} . Here also, we are done since $f(P_{n-2}) + \frac{f(v_{n-1})-5}{2} \ge \rho$ (P_{n-2}) . So, we assume that $f(v_n) \ge 1$. In a similar way, we may assume that $f(v_1) \ge 1$. Consider the paths $P_A : v_1v_2...v_{n-2}$ and $P_B : v_3v_4...v_n$. Then, any one of the path contains at least $\rho(P_{n-2})$ pebbles. Without loss of generality, let P_A be the path. If $f(v_{n-1}) = 0$ then we are done easily. Similarly, we are done if $f(v_{n-1}) + f(v_n) \ge 2$ except the case $f(v_n) = 1$ and $f(v_{n-1}) = 1$. Now, we consider the case $f(v_n) = 1$ and $f(v_{n-1}) = 1$. For this case, P_A contains $P(P_n) = 1$ pebbles on it. Using at most $P(P_n) = 1$ and $P(P_n) = 1$ and then we move a pebble to $P(P_n) = 1$ from the vertices of $P(P_n) = 1$ and then we move a pebble to $P(P_n) = 1$ from the vertices of $P(P_n) = 1$ and then we move a pebble to $P(P_n) = 1$ from the vertices of $P(P_n) = 1$ from the vertices of $P(P_n) = 1$ and then we move a pebble to $P(P(P_n) = 1)$ from the vertices of $P(P(P_n) = 1)$ from the vertices of $P(P(P(P_n) = 1)$.

Case 2. *n* is even.

Clearly, we are done if $f(v_n) = 0$ or $f(v_1) = 0$, since $\rho(P_n) = \rho(P_{n-1})$ when n is even. So, we assume that $f(v_n) \ge I$ and $f(v_1) \ge I$. Consider the paths $P_A : v_1v_2...v_{n-2}$ and $P_B : v_3v_4...v_n$. Then any one of the path contains at least $\rho(P_{n-2})$ pebbles. Without loss of generality, let P_A be the path. If $f(v_{n-1}) = 0$ then we are done easily. Similarly, we are done if $f(v_n) + f(v_{n-1}) \ge 2$ except the case $f(v_n) = I$ and $f(v_{n-1}) = I$. Finally, we consider the case $f(v_n) = I$ and $f(v_{n-1}) = I$. For this case, P_A contains $\rho(P_n)$ -2 pebbles on it. Using at most 2^{n-2} pebbles from the vertices of P_A , we can move a pebble to v_{n-1} . If we use exactly 2^{n-2} pebbles to pebble v_{n-1} from P_A , then we move one pebble to v_{n-2} from v_{n-1} and hence we are done since the path $v_1v_2...v_{n-2}$ contains more than $\rho(P_{n-2})$ pebbles. If we use less than 2^{n-2} pebbles to pebble v_{n-1} from P_A , then we move one pebble to v_n from v_{n-1} and hence we are done since P_{n-2} contains at least $\rho(P_{n-2})$ pebbles.

Thus
$$\rho(P_n) \leq \begin{cases} \frac{2^n-1}{3} & \text{if } n \text{ is even} \\ \frac{2^{n+1}-1}{3} & \text{if } n \text{ is odd} \end{cases}$$
.

REFERENCES

- [1]. F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc Math, 2 (1989), 467-472.
- [2] B.Crul, T.Cundiff_, P.Feltman, G.H.Hurlbert, L.Pudwell, Z.Szanizlo, Z.Tuza, The cover pebbling number of graphs, *Discrete Math*, **296** (2005), 15-23.
- [3] G.Hurlbert, A survey of graph pebbling, *Congressus Numerantium*, **139** (1999), 41-64.
- [4] A. Lourdusamy, C. Muthulakshmi @ Sasikala, Maximum independent cover pebbling number of a star, *International Journal of Mathematical Archive*, **3(2)** (2012), 616-618.
- [5] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of a Binary Tree, *Sciencia Acta Xaveriana*, **3(2)** (2012), 9-20.
- [6] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, Maximum independent set cover pebbling number of an *m*-ary tree, Accepted for publication (*Sciencia Acta Xaveriana*).